"Z" 圖形 與 畢氏定理 (商高定理、勾股弦定理)
表面積=平方和*6 " Z " *6 cube net |
平方和=a^2+b^2 " Z "= a^2+b^2 SUM of 2 squares |
方塊 差方 SQUARE |
| a - b | 勾股差 L |
多方塊嗎? n-OMINO |
12=2*6 |
2=1^2+1^2 |
0 |
0 |
false否 |
30=5*6 |
5=1^2+2^2 | 1 | 1 | true是 |
48=8*6 | 8=2^2+2^2 | 0 | 0 | false否 |
60=10*6 | 10=1^2+3^2 | 4 | 2 | true是 |
78=13*6 | 13=2^2+3^2 | 1 | 1 | true是 |
102=17*6 | 17=1^2+4^2 | 9 | 3 | true是 |
108=18*6 | 18=3^2+3^2 | 0 | 0 | false否 |
120=20*6 | 20=2^2+4^2 | 4 | 2 | true是 |
150=25*6 | 25=3^2+4^2 | 1 | 1 | true是 |
156=26*6 | 26=1^2+5^2 | 16 | 4 | true是 |
174=29*6 | 29=2^2+5^2 | 9 | 3 | true是 |
192=32*6 | 32=4^2+4^2 | 0 | 0 | false否 |
204=34*6 | 34=3^2+5^2 | 4 | 2 | true是 |
222=37*6 | 37=1^2+6^2 | 25 | 5 | true是 |
240=40*6 | 40=2^2+6^2 | 16 | 4 | true是 |
246=41*6 | 41=4^2+5^2 | 1 | 1 | true是 |
270=45*6 | 45=3^2+6^2 | 9 | 3 | true是 |
300=50*6 | 50=1^2+7^2 | 36 | 6 | true是 |
300=50*6 | 50=5^2+5^2 | 0 | 0 | false否 |
1~100的 "Z" 用降子的整理方式是否更容易理解呢?注意一下 50,65,85 各有兩組解。
1~100 "Z" 圖形的座標表示 Z= c^2= (row=b)^2 + (column=a)^2
b \ a |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 2, L= 0 | ||||||
2 | 5, L= 1 | 8, L= 0 | |||||
3 | 10, L= 2 | 13, L= 1 | 18, L= 0 | ||||
4 | 17, L= 3 | 20, L= 2 | 25, L= 1 | 32, L= 0 | |||
5 | 26, L= 4 | 29, L= 3 | 34, L= 2 | 41, L= 1 | 50, L= 0 | ||
6 | 37, L= 5 | 40, L= 4 | 45, L= 3 | 52, L= 2 | 61, L= 1 | 72, L= 0 | |
7 | 50, L= 6 | 53, L= 5 | 58, L= 4 | 65, L= 3 | 74, L= 2 | 85, L= 1 | 98, L= 0 |
8 | 65, L= 7 | 68, L= 6 | 73, L= 5 | 80, L= 4 | 89, L= 3 | 100, L= 2 | |
9 | 82, L= 8 | 85, L= 7 | 90, L= 6 | 97, L= 5 |
1~100 "畢達哥拉數 | a^2- b^2 | , 2ab , a^2+ b^2 " 的座標表示
b \ a |
1 | 2 | 3 | 4 | 5 | 6 |
2 | 3,4,5 | |||||
3 | 8,6,10 | 5,12,13 | ||||
4 | 15,8,17 | 12,16,20 | 7,24,25 | |||
5 | 24,10,26 | 21,20,29 | 16,30,34 | 9,40,41 | ||
6 | 35,12,37 | 32,24,40 | 27,36,45 | 20,48,52 | 11,60,61 | |
7 | 48,14,50 | 45,28,53 | 40,42,58 | 33,56,65 | 24,70,74 | 13,84,85 |
8 | 63,16,65 | 60,32,68 | 55,48,73 | 48,64,80 | 39,80,89 | 28,96,100 |
9 | 80,18,82 | 77,36,85 | 72,54,90 | 65,72,97 |
2002/1/21 addendum