¬üÄRªº«÷¹Ï The most Beautiful Solution
2. ©·½u«÷ªO The Segment
Puzzle
3. ©·½u«÷ªOªº¥¿¤èÅé®i¶}
? 15 Tetrasticks cover a Cube ?
4. CD²°18¥©ªO¤j©ñ°e ? What¡¦s new in
a CD case ?
5. ¹ïºÙ»P¥þµ¥
The Relationships in Solutions
§@ªÌ¡G°ª¤å¤s ³ø§i¡G2001/11/23 ¾ú®É¡G50¤ÀÄÁ ¾ã²z¡G2001/12/17
·PÁ¦U¦ì»YÁ{«ü¾É¡Aº¥ýnÁn©ú¡A¥»¤H¥u¬O¤@Ó·~¾lªºµ¥¿n²§«¬ (Polyforms) «÷¹Ï·R¦nªÌ¡A¤T¦~¨Ó¦bºô¸ô¤W»`¶°¤Î¬ã¨s¤F¤@¨ÇªF¦è¦³ÂI¦¨ªG¡A¥h¦~«×¦b²H¦¿¤j¾Çº«×µoªí¡A¤µ¦~¦h¤FNote 3¤ÎNote 4ªº¶i«×¡A¦b¦¹µ¹¦U¦ì§@¤@Ó³ø§i¡C¦pªG¤º®e¯à°÷¸ò¬ÛÃöªº¼Æ¾Ç²z½×ªg¤W¤@ÂIÃä¡A¤]¥u¯àºâ¬O¥©¦X§a¡I²¦³ºÁ}²`ªº¼Æ¾Ç¤½¦¡¹ï¤@Ó«D¬ì¯Z¥X¨ªº¤H¬O¬Û·í¨I«ªº¡A±µ¤U¨Óªº®É¶¡À³¸Ó¬O¤ñ¸û»´ÃP¤~¬O¡CÁ¿ÃD¬O¡yThe
most Beautiful Solution¡z¡C§Úªº¥Ø¼Ð¬O¦b¦³ªº¸Ñµª·í¤¤§ä¤@ӳ̬üÄRªº¡A¥i¯à¨CÓ¤Hªº¼f¬üÆ[ÂI¤£¦P¡A¤µ¤Ñ´N´£¥X¨Ó¥»¤Hªºµª®×¡A½Ð¦U¦ì¦h¦h«ü±Ð¡A¤]·|´£¥X¤@¨ÇÓ¤HªººÃ°Ý´N±Ð¦U¦ì¥ý¶i¡C¦^¨ì³Ì«eÀY
ºô¸ô¤WµÛ¦Wªº´X¦ó¾Ç¶éºô¯¸ The Geometry
Junkyard¡ÐDissection by David
Eppsteinªº½g´T¡A2001/4/18§ó·s®É¦³³o¼Ë¤@¬q¹ïÓ¤Hºô¶ªº¤¶²Ð¡A¥»¤H²`·Pºa©¯¡C§Ú±ÀÂ_À³¸Ó¬ONote 4¤Wºô®É¡A±H¤F´X«Ê¼x¨D²Ä¤@Ӹѵª¤§Email¥H«áªº²Ä¤T¤Ñ§a¡HProteon's Puzzle Notes Wen-Shan Kao covers cubes with
polyominos and polysticks, packs worms into boxes, and studies giant tangram
like puzzles. Proteon¬O§Ú¦b¨È¨ô¥«ªºµù¥U¦W¤l¡C¥H¤W´N·í§@¬O¦Û§Ú¤¶²Ð ( Who am I¡H) ¡A»°ºò¬Ý¬Ýº¶ªº´XӹϮקa¡I¦^¨ì³Ì«eÀY
¥h¦~«×¦~·|§Úµo²{¤F¡A¤»Ó¥þµ¥ªº¤Q®æ°©µP(Dekominoes)¥i¥H¥]ÂÐ¥¿¥ß¤èÅéªí±ªº¤TÓ°ò¥»¹Ï§Î¡G"Z"«¬¡BÀn¤l«¬ (Duck)¡B¥ª¤âºj«¬ ( Left-hand Gun)¡C¨ä¤¤"Z"«¬¥i¥H»¡¬O³Ì¬üÄRªº¡A¦]¬°¥¦ªº°Å¶K¥~®Ø¬O¬Û·í³W«hªº¡AÁÙ¥i¹B¥Î²¦¤ó©w²z±À®i¨ì§ó¤jªº"Z"«¬¡C¦Ó³o¤»Ó¤j"Z"«¬ªº34®æ°©µP(34-ominoes)¡A¦A¥[¤W¨âÓ¤T®æ°©µP(Trominoes)ªº²°»\¦©Àô¡A¥¿¦n²Õ¦¨¤@Ó¥¿¥ß¤èÅé²°¤l¡A¨º»òÓ¤H¤]»{¬°¡A³oÓ²Õ¦X¹Ï¤]¬O³Ì¬üÄRªº¡H·í²Õ¦¨¦UºØ®i¶}¹Ï«á¡A±µ¤U¨Ó¤ñ¸û§xÃøªº¤u§@¬O¥Î§C¶¥(order)ªº¦h®æ°©µP(Polyominoes)¥h¶ñº¡¥¦¡A¦Ó²´«eªº³oÓ¦©Àô²°¤l´N¬O¥Î35Ó¤»®æ°©µP(Hexominoes)¥h¶ñº¡¡C¦U¦ì¥i§Q¥Î¸q¤j§QªºLivio Zucca¥ý¥Í ( PolyMultiFormsªºµo©ú¤j®v ) ³Ìªñ¦bºô¯¸¤W¶K¤F¤@ӫܤè«Kªº¤¶±µ{¦¡
(download
the complet setup program here [1.5MB]) ¡A¥Î·Æ¹«»´©öªºÂI¿ï¤è®æ«á¡A°¨¤W²£¥ÍHTML®æ¦¡¨Ó°õ¦æ¡C(¨ä®Ö¤ßµ{¦¡¬O¥Ñ¡A²üÄõGerard Putter ¥ý¥Í¼¶¼gªº Universal
Polyominoe solver ) ¡C¦^¨ì³Ì«eÀY
¥h¦~«×¦~·|§Úº«×¤½¶}µoªí¤F¡y18¥©ªO¡zªº«÷¹Ï¹CÀ¸¡Aµoªí¤F³\¦hºØ¦³½ìªºª±ªk·~¤w±i¶K¦bÓ¤Hºô¯¸¸Ì¡A¤µ¦~§Ún¦A¸É¥R¤@¨Ç§ó¦³½ìªºª±ªk¡C¤S¥Ó½Ð¤é¥»3077931¡B¼w°ê20020235.9¡B¤¤°êZL00252105.9±M§QÅv§¡¤w®Öã¡A¥xÆW
466964ªº±M§Q«h¦b¤Q¤G¤ë¤@¤é¶}©l¤½§i¤TÓ¤ë¡B¬ü°êªº±M§Q¬O¼f®Ö¤¤¡C¦U¦ì¤â¤¤¶Ç¾\ªºÀ£§J¤O¹p®g¤Á³Î²£«~¡A¬O¤w¸g°Ó«~¤Æªº±Ð¨|ª©²£«~¡A¤j·|®Ñ®iÅu¦ì¥ç¦³¥x¤¤ªº¸g¾P°Ó¶i¾n¡A¤j®a¥i¥H«e©¹°ÑÆ[¿ïÁÊ¡C¦U¦ì½Ðª`·N¬Ý¤@¤U¡A¨Ã¹ï·Ó¤â¤¤¶Ç¾\ªº®i¶}¹Ï¹ê«~¡A³o¤Q±ø½u¬q¥]ÂÐ¥¿¥ß¤èÅ骺¹Ï§Î¡A¬O¥h¦~«×³oÓÀn¤l«¬¤Q®æ°©µPªº¤¤¤ßÂI³sµ²¦Ó¦¨ªº°ò¥»¤¸¥ó¹Ï©Ò²Õ¦¨ªº¡A«Ý¹Ù¨àÁÙ¦³§óºëªöªº¹Ï§Îµ¹¦U¦ì³ø§i¡C¦^¨ì³Ì«eÀY
2.
©·½u«÷ªO The Segment Puzzle
½u¬q(Segment)»P¦h¤è¶ô(Polyominoes)µL½×¬O¥±©Î¥ßÅ骺±µ¦X§¡¦s¦bºò±KªºÃö«Y¡ASolomon W. Golombo ªºPolyominoes
®Ñ¤¤¦³°Q½×¡C§ÚÌ¥ý§â¦h¤è¶ôªº¨C¤@Ó³æ¦ì¥¿¤è§Î¤¤¤ßÂI³sµ²°_¨Ó¡A3¶¥¤Î4¶¥ (order) ªº¦h¤è¶ô³sµ²¦¨ªº½u¬q¡A§ÚÌ¥u¨ú¥Î4Ó½u¬qªº²Õ¦X( 4-segments
or Tetrasticks )¦@¦³16ºØ³y«¬¡A¨Óª±¤@Ó¹CÀ¸¡C¯Ã¬ù¦³¤@¦ì¤¤¾Ç¼Æ¾Ç±Ð®vLawrence Detlor §â½u¬qªº²Õ¦X©R¦W¬° Polypleura¡A¦Ó¨C³o16¤ùªº©R¦W»PSolomon
Golomboªº12Ó¤®æ°©µP(Pentominoes)©R¦W¤¬¬Û¹ïÀ³¡A¤]¬O¦³¾Ç²zªº¨Ì¾Ú¡Aȱo°Ñ¦Ò¡C¦^¨ì³Ì«eÀY
§Úªº¡y©·½u«÷ªO¡z³Ìªì¬O¾\Ū ¤ýµn¶Ç
¦Ñ®v½sµÛªº¡y¼Æ¾Ç¹CÀ¸¤jÆ[¡z²Ä¥|¶°¡A²Ä145~148¶¦³³o¼Ë¤@¬q±Ôz¡G¡u½u¥©ªO¡v¬°
³¯¤å¿ü ¥ý¥Í³]p¡A¨ú¦W¬°¡u´¼¥©ªO¡v¡A¥u¥Z¸ü¦³¤@¨Ò¸Ñµª¡A±q¦¹¿Eµo¤F¤÷¿Ë»P§Ú¤£Â_¦a´M¨D¨ä¥L¸Ñµªªº¿³½ì¡A¨â¦~¦h¨Ó§Úªº¤÷¿Ë¶¢·v®É´N§âª±¤@µf¡A¦Ó¥Ñ§Út³d¬ö¿ý¤ÀÃþ¾ã²z¡C«ê¥©
mathpuzzle.com by Ed Pegg Jr. material added 1&10 April
2001.¶K¤F¦³Ãö
Polysticksªº°Ñ¦Ò¤å³¹¡C¦ÓDonald
E. Knuth °ª¼w¯Ç±Ð±Âªº½×¤å¥Z¸ü¸Ñµª¼Æ¬Oh: 72 sol. J: 382 sol. L: 607 sol.
N: 530 sol. y:
204 sol. (Refereed Papers P159 Dancing
Links by P.17~18 ): The
set of all solutions was first found by [37] Bernhard Wiezorke and Jacques
Haubrich. (February 1994) ¡C¦³¤F¤Wz¨â½g³ø§i¯u¬O¦pÀò¦ÜÄ_¡A»°ºò¾ã²z¤âÀY¤Wªº¸ê®Æ©ó4/10§¹¦¨¡A¤~¦³Note 3 ªº¥X²{¡C¦^¨ì³Ì«eÀY
§Ú§â«¬¤ù³y«¬µy§@§ï¨}¦¨¶ê©·ª¬¡A¦p¦¹"O"«¬¤ù´N¹³¡u²¢²¢°é¡v¤@¼Ë¡A¦A¥Î¥|¤À¤§¤@ªº¶ê©·©Mª½½u¬q¬°°ò¥»¤¸¥ó¡A²Õ¸Ë¦¨¤ñ¸û¶ê·Æ¤@ÂIªº¡y©·½u«÷ªO¡z¡C¨º»ò¡u²¢²¢°é¡v¨ì©³n¦h«p¡A¤~¯àºò±KªºçEº¡¤@Ó¥±©O¡H¤]´N¬O»¡¤º¶ê¤Î¥~¶ên©¼¦¹¬Û¤Á¡C©ó¬OÀ³¥Î²¦¤ó©w²zºâ¥X¡A²¢²¢°éªº«p«×¬O®Ú¸¹2ªº¤º¶ê¥b®|(
SQR(2) * r ) ¡C¦Ó16ºØ«÷ªOªº©R¦W«h°Ñ¦ÒLawrence
DetlorªºPolypleura
¤º¤åµy§@Åܧó¡A¦]¬°¡¨P:1~4¡¨ªº¥|ºØ¸ûÃø¿ë§O¡A©Ò¥H§Ú¨Ì·Ó^¤å¦r¥À§Îª¬©Mµ§¹º¨Ó©w¸q¡]¦Ñ¹ê»¡§Ú¤]¥iºâ¬O¤@Ó·~¾lªºPuzzle Designer¡H¡^¡C¦^¨ì³Ì«eÀY
§Ú¨Ã¥HXY¶b¬°Ãè®g½u¡A¥Îªü©Ô§B¼Æ¦r¤Î³Ì¤U¼h¥ªÃä²Ä¤@±ø½u¬q¡A¤À§O¥Nªí¤£¦P¤è¦ìªº§Îª¬¡A¥þ³¡¼Ðµù¦b«¬¤ùªº¥¿¤Ï¨â±¡A¥H¤è«K¬ö¿ý¤£¦Pªº¸Ñµª¡C¬ö¿ý«h¬O¥Ñ¥ª¤U¨¤ìÂI¶}©l¡A¦V¥k¬ö¿ý«¬¤ù¥N½X¤Î³Ì¤U¼h¥ªÃä²Ä¤@±ø½u¬qªº¼Æ¦r¡A³v¼h¦V¤W¬ö¿ý§Y¥i¡C¨Ã¥i¥H
"O" ©Î "X" «¬¤ù©w¦ì (·íµM¥Î¨ä¥L¥ô¤@«¬¤ù¤]¥i¥H¨Ó¤ÀÃþ¡A¹³³oÓ"I"¤]¤£¿ù¡A¥i¯à¦³3Ó¦ì¸m¨Ó¤ÀÃþ)¡A¨Ã¤À§O¦C¥X¥i¯àÂ\©ñªº¦ì¸m¡A¦A¥[¥H½s¸¹¡C¥H¤å¦r¨Ó¬ö¿ý¤@Ӹѵª¥²¶·¬O°ß¤@ªº¡A©Ò¥H¤ÀÃþ«¬¤ùªº¦UºØ©w¦ì¡A¥²¶·¦A¦Ò¶q¬O§_¦³¹ïºÙ¶b©Î±ÛÂà¶b¡A¨º¸Ñµª«h¥²¶·Â½Âà©Î±ÛÂà¡A¥H¤å¼Æ¦r¦ê±Æ§Ç³Ì¤pªÌ¬°¨ä°ß¤@¸Ñµª½X¡C¦^¨ì³Ì«eÀY
¦b¾ã²z¹Lµ{¤¤¡A·N¥~µo²{³oÓ«D±`¤Ö¨£ªº¸Ñµª(¤]¬O§Ú¦Ñª¨±Æ¥X¨Óªº)¡A¦]¬°¥¦¦³¤TÓ½u¹ïºÙªº¹Ï§Î¡A§ó¦³¤T«¬¤ù¥i¤¬¬Û¹ï´«ªº§Îª¬¡AÁ`¦@¥i¥HÅܤƥX16Ó¬ÛÃöªº¸Ñµª¡C¨º»ò§Ú»{¬°¡A³o¤]¥i¯à¬O³Ì¬üÄRªº¤@Ӹѵª¡HÁÙ¦³¥i¥H°Ñ¦ÒAlfred Wassermann Covering
the Aztec Diamond with One-sided Tetrasticks ¤@¤å¡A¨ä³æ±ª±ªk´N¬O¡A«D¹ïºÙ«¬¤ù¦³¥¿¤Ï¨â¤ù¡A¹CÀ¸®É¤£±o½±¡F³o¤]¬O·íªì°ª¼w¯Ç±Ð±Âªº½×¤å»{¬°¥i¯à¨S¦³¸Ñªº°ÝÃD¡C¦^¨ì³Ì«eÀY
¦U¦ì¥i¥H¶Ç¾\¤@¤U¡A§Ú¤â¤u»s³yªº¨âÓ¤ì»s©·½u«÷ªO¡A¸ÕµÛ¬D¾Ô¬Ý¬Ý¡HÃø«×¬Û·í°ª®@¡I§Ú̬ݤ@¤Uh¡BJ¡BL¡BN¡By¤Ó¤ÀÃþªºÁ`¸Ñµª¼Æ¡A¨ì©³Ãø©ö«×¦p¦ó¨Óµû¶q¡H¬O¸Ñµª¼Æ©O¡HÁÙ¬O«¬¤ù¼Æ©O¡HÁÙ¬O¨âªÌ«ö¬YºØ¥[Åvªk¥hpºâ©O¡H§Ú¤]¤£ª¾¹D¡CˬO«e´X¦~¬y¦æ¤@®Éªº¥|¨¤«÷¹Ï©Î¤»¨¤«÷¹Ï¡A¦]¬°§xÃø«×·¥°ª¡A¦^ÀY¸ß°Ý½æ«÷¹Ï©±ªº¦ÑÁó¡A¤]¬O¡u¬Y®_¦Ï¡v¡H¡Iºô¸ô¤W¦³¤H¼g¤F¤@Ó¨D¸Ñµ{¦¡¨Ñ¤H¤U¸üMatch
IQ Puzzle by ¤ý©÷¤¸¡A§Ú¤]§â¥¦¥Î¨Ó¸Ñµª®a¤¤°ï¸m¤w¤[ªº«÷¹Ï¡Aµ²ªG³£¬O¥u¦³¤@©Î¤GӸѡA©Ò¥H¤£¤[´N®øÁn°Î¸ñ¤F¡C¦^¨ì³Ì«eÀY
ȱo¤@´£ªº¬O¡ALivio
Zucca¥ý¥Í¬Ý¤F§Úªººô¶¡A¤£¤[´N±H¨Ó¤F¥u¯à±Ë¥hh,J,L,N,y¤ºØ«¬¤ù¸ÑµªÃÒ©úªk¡A©ó¬Oµy§@¾ã²z¶K¦b§Úªººô¶¸Ì¡C¦U¦ì¬Ý¤@¤U³oÓ³ò¶µÛ 5*5 ¤è®æªº¸Ñ½L¡AµÛ¦Ç¦â³¡¤À¬O³sµ²¶ô¤£¦Ò¼{p¼Æ¡A5*5 ªº¤è®æ¬O¥Y¬W¤£¯à©ñ«¬¤ù¡A¨ä¥Lªºp¼Æ¤è¶ô¡ALivio Zucca¥ý¥Í§â¤ô¥ªº¤è¶ôµÛ¦¨ÂŦâ¡F««ª½ªº¤è¶ôµÛ¦¨¬õ¦â(Checkerboard
colorings)¡A©Ò¥H¾ãӸѽL¦U¦³30Ó¬õ©ÎÂÅ¡A³£¬O¬Ûµ¥ªº(balanced)¡C¨ºC,f,G,O,S,T,u,V,W,X³o¤Q¤ä«¬¤ù¡AµL½×«ç¼ËÂ\©ñ¦b½L¤W¡A³£¬O2¬õ2Âų£¬O°¸¼Æ¥B¬Ûµ¥ªº¡C¨º"I"«¬¤ùµL½×««ª½Â\©ñ©Î¤ô¥Â\©ñ³£¬O4¬õ©Î4ÂÅ¡A³£¬O°¸¼Æ¥B¬õÂżƤ£µ¥¡C¤Sh,J,L,N,y³o¤¤ä«¬¤ùÂ\©ñ¬Ý¬Ý¡A³£¬O3¬õ1ÂÅ©Î3ÂÅ1¬õ¡A¬O©_¼Æ¥B¤£µ¥ªº¡C¬õÂŬ۵¥ªº«¬¤ù¥i¥H¤£¦A¦Ò¼{¡A"I"«¬¤ù¥ý¥Î"h¤ÎJ"¨â¤ù¨Ó¥¿Å¡A"L¤ÎN"«¬¤ù§â"N"¤ù±ÛÂà90«×¡A¦p¦¹¥[°_¨Ó´N¬O4¬õ4ÂŬO¬Ûµ¥ªº¡A³Ì«á¥u³Ñ¤U"y"«¬¤ùÅo¡H©Ò¥H³o5¤ä©_¼Æ¡F¬õÂŤS¤£µ¥ªº«¬¤ù¡A¬O¥i¥H±Ë¥h¤£¥Îªº¡A³o¼Ë²¼äªºÃÒ©ú¬Û·í¤£¿ù§a¡I¥LÁÙ»¡¡G¥i¥H§ïÅÜ¥~®Ø§Îª¬¡A¨Ó¹Á¸Õ¨ä¥Lªº¸Ñ½L¡C¥t¥~¥L§â¨â²ÕªºTetrasticksÁ`¦@32¤ù²Õ¦¨¯x§Î½L±¤]¬OÆZ¦³½ìªº¡F´N¬On¸Ñ¨M©_°¸¼Æ®Ö¹ï(Parity
Check)ªº°ÝÃD§a¡H¦^¨ì³Ì«eÀY
ºô¸ô¤W¤]¦³½u¬qªº¼Æ¦r«÷¹Ï¹CÀ¸¡A¬O¥ÑMartin Watson ¥ý¥Í³]pªº²£«~¡A¥Ñ 0¨ì9 ªº¼Æ¦ì¼Æ¦r²Õ¦¨ªºDigigrams¡AÁ`¦@¦³49Ó½u¬q¡A¥i¥H§Gº¡
4*5 ªº®æºô¡C¨º»ò¬O§_¦³¸Ñµª©O¡H¦³¤HÀ°¥L¸Ñ¥X¨Ó¡A¥u¦³°Ï°Ï5ӸѡA§xÃø«×¤Ó°ª¤F§a¡I¦^¨ì³Ì«eÀY
3. ©·½u«÷ªOªº¥¿¤èÅé®i¶} ? 15 Tetrasticks cover a Cube ?
Åý§Ú̦^ÅU¤@¤UÓ¤H¥h¦~«×ªº³ø§i¸Ì¡ASolomon W. Golombo ªºPolyominoes
®Ñ¤¤ ªþ¿ýB¡A²Ä23¸¹ÃD¡G¦³¤H§â12¤ù5®æ°©µP(Pentominoes)«÷¦¨³oÓ©_©Çªº¥ß¤èÅé®i¶}¹Ï¡C§Ú«h§â¥¦§ïÅÜ¥~®Ø§Îª¬¡A¤p¥©ªº·h°Ê¤TÓ³æ¦ì¥¿¤è§Î¡A¨Ïµô¤Á½u¾ã»ô¨Ç¡C¸U¸U¨S·Q¨ì¡A³oÓ®i¶}¹Ï³ºµM¥i¥H°Ï¤À¦¨¤»µ¥¥÷¡A©ó¬O¶}¨Ï´M§ä¨ä¥L¥i¯àªº°ò¥»¤¸¥ó¹Ï§Î¡C³o¬O²Ä¤TӹϧΡA§Ú§â¥¦ºÙ¬°¥ª¤âºj«¬
( Left-Hand Gun ) ¡C¦]¬°¥¿¥ß¤èÅé®i¶}¹Ï¬O¥i¥HÅu¶}¦¨ "T" ¦r«¬¡A§â¥¦¾î¹L¨ÓÂ\©ñ¡A´N¹³ªø±èªº§Îª¬¡A¤W¤U¦U¦³¤@Ó²y¦bºu½¡C°²¦p±è¤l¥i¥HµL¥[ªø¡A´N¥i¥H§ä¥X«Ü¦hºØªº®i¶}¹Ï§Îª¬¡A¦]¬°¨C¦¸¨úªø±è¤¤4Ó¥¿¤è§Î¡A¥~¥[¤W¤U¦U¤@Ó¥¿¤è§Î¦b¥ô¦ó¦ì¸m§¡¥i¡A´N¦³¦hºØªº²Õ¦X¡C©Ò¦³ªº®i¶}¹Ï¦Cªí¡A¦U¦ì¥i°Ñ¦Ò¥h¦~«×³ø§i¡A¤w¶K¦bÓ¤Hºô¯¸¤W¡C¦^¨ì³Ì«eÀY
¬JµMLivio
Zucca»¡¡G¥i¥H§ïÅÜ¥~®Ø§Îª¬¡C§Ú´N¹Á¸Õ§â¥h¦~µoªíªº3Ó°ò¥»«¬³s³s¬Ý¡A½u¬qªº§Îª¬¬O§_¥i¥H²Õ¦¨¥¿¥ß¤èÅ骺®i¶}¹Ï©O¡Hµª®×¬OªÖ©wªº¡C¤WÃä³oÓÀn¤lªº10½u¬q¹Ï ( Duck 10-sticks )
¬OÂI¹ïºÙªº¹Ï§Î¡A¥¦ªº¤Q¦r¬[«¬®i¶}¹Ï¥[¤Wµô¤Á½u¡A¦U¦ì¥J²Ó¬Ý¤@¤U¡G¬O¤£¬O5®æ°©µP "Z" «¬ªº¥¿¤èÅé®i¶}¹Ï©O¡H¦A¬Ý¤@¤U½u¬qªº´Ñ½L±m¦â (
Checkerboard colorings ) ¤ô¥««ª½ªºÂŬõ¤ñ¬O¡G32¤ñ28¡C²z½×¤W¥i¯à·|¦³15Ó©·½u«÷ªO¥h¶ñº¡¥¦§a¡H¦Ü©ó¬O§_¦³¸Ñ©O¡H´Nn¬Ý¹B®ðÅo¡IÓ¤Hºô¶Note
4.1¸Ì¦³©Ò¦³ªº11ºØ®i¶}¹Ï¦Cªí¡C¦^¨ì³Ì«eÀY
±µ¤U¨Ó¬Ý¥ª¤âºjªº¡]13¡^¹Ï (
Left-Hand Gun 10-sticks ) ¡A¥¦¬O«D¹ïºÙªº¹Ï§Î¦³4Ó¤è¦ì¡A«ö·Ó¥h¦~«×§Úªºªøªø¶¥±è¤èªk¥i¥H§ä¥X³oÓ "T" «¬®i¶}¹Ï¡A¦pªG¦A¥[¤Wµô¤Á½u¡A¦U¦ì¥J²Ó¬Ý¤@¤U¡G¬O¤£¬O5®æ°©µP
"P" «¬ªº¥¿¤èÅé®i¶}¹Ï©O¡H¦Ó10®æ°©µP "P" «¬(©ÎºÙ¬°©æ«üthumb«¬)ªº¥¿¤èÅé®i¶}¹Ï¥ÑLivio
Zucca ±H¨Óµ¹§Ú¡A¥Z¦b¥LªºTo cover a solid¡C¥h¦~³Q§Úµ¹±Ë¥h¤£nªº¡A¦]¬°¥¦¦³2Ó³»ÂIµLªk©w¸q¦ì¸m¡A¤µ¦~«×¥i¯àn§â¥¦¦A¾ß¦^¨Ó¤F¡H¦U¦ì¤â¤¤ªº¹ï·Óªí«Ü²M·¡¡A³o¨âÓ¤Q¦r¬[§Îª¬ªº®i¶}¹Ï¡A¥u¬Oºô®æ¤À§O¬°1¡G2©M1¡G3ªº®t§O§a¤F¡I³o¬O¾ã²z¥»¦¸³ø§i®É¤~µo²{ªº¡A¥i»¡¬O³oÓ¬ã°Q·|Ó¤H³Ì¤jªº¦¬Ã¬¡C¼K¡I¯u¬O¦³½ì¡A³ºµM·|¦³³oºØ¹ïÀ³Ãö«Y¡H§Ú²{¦bÁÙ¬O«Ü¯Ç´e¡H¡I¦^¨ì³Ì«eÀY
¨º»ò§Ún°Ý¡G¤°»ò¼Ëªº¹Ï§Î¡A¥i¥H¥Î6Ó¥h²Õ¦¨¥¿¤»±Å骺®i¶}¹Ï©O¡H°£¤F
"Z" «¬¤j¤p¨t¦Cªºµô¤ÁÃä¤ñ¸û¾ã»ô¡AÁÙ¦³Àn¤l«¬ªº¡A¥H¤W³o¨Ç³£¬OÂI¹ïºÙªº¡]symmetry¡^¹Ï§Î¡C«D¹ïºÙ¡]asymmetry¡^§Îª¬ªº¥ª¤âºj«¬(Left
Hand Gun)¡A½s¸¹¦b²Ä15¸¹ªº©M15Bªº®i¶}¹Ï¡A§¡¦³¡u¦P¤@¤è¦ì¡v¥i¥HµL¨î¦açEº¡¥±¡AµM«á¥h«õ¥X¨Ó6Ó¥i¥H²Õ¦¨¥¿¥ß¤èÅ骺®i¶}¹Ï¡A³Ì«á¦A±ÛÂà¤@¤U¨ä¤¤ªº´XÓ±¡A¦n¹³¤£Ãø§ä¥X¨ä¥L10ºØªº®i¶}¹Ï¡H³o¼Ë¬O§_»ô¥þ©O¡H¦³¨S¦³¿òº|©O¡H§ÚµLªkÃÒ©ú¡C¥H¤W³o¨Ç¹ê¨Ò§Ú¦b³oÃä´£¥X¨Ó´N±Ð¦U¦ì¥ý¶i¡A¦³¨S¦³¨ä¥Lªº¤èªk©O¡H³o¤]¬O©¹«áÓ¤HÄ~Äò¬ã¨sªº½ÒÃD¡A´N¦¹¥´¦í¤F¡C¦^¨ì³Ì«eÀY
4. CD²°18¥©ªO¤j©ñ°e ? What¡¦s
new in a CD case ?
¡y¤Q¤K¯q´¼«÷½L¡z¬O§Ú¥Ó½Ð±M§Qªº¦WºÙ¡A²ºÙ¡y18¥©ªO¡z¤ñ¸û¦n°O¡C¦Ó¦hµ¥¸yª½¨¤¤T¨¤§Î©Î¥iºÙ¦h¥b¤è¶ô(Polytans or Polyaboloes)µ¥ªøªºÃä±µ¦X²Õ¦¨ªºµ¥¿n²§«¬¤ù(Polyforms)¡A3¶¥¤Î4¶¥ªº¦U¦³4¤ù
(Tritans)¤Î14¤ù (Tetratans)³y«¬¡A§Ú§â³o18¤ù©R¦W¬°18¥©ªO (18 ProTangram)¡A¤]´N¬O쫬¤C¥©ªO(prototype
of Tangram)©Î±M®a«¬¤C¥©ªO(professional Tangram)ªº·N«ä°Õ¡I¦^¨ì³Ì«eÀY
«¬¤ù©w¸q²Õ¦¨¡A¤À§O¥H³y«¬»Å¦ü^¤å¦r¥ÀA,B,C,D¤ÎF,G,H,I,J,K,M,Q,R,S,V,W,X,Z¨Óªí¥Ü¡C¦A¥H¤Q¦r¶b¬°Ãè®g½u¡A¥Îªü©Ô§B¼Æ¦r¥Nªí¤£¦P¶H«¬¤ù¥N½X¡A¼Ð¥Ü¦b¨C¤@«¬¤ùªº¡u©³¼h¥ªÃ䪺ª½¨¤¤T¨¤§Î¡v¤º¡C¦p¦¹±Æ¥X¤F¸Ñµªªº·í®É¡A¦b¦¹¥H6*6-4*0.5=34ªº¸Ñ½L»¡©ú¡A¥ÑìÂI¶}©l«ö·ÓX1Y1,X2Y1,..X6Y1,X1Y2,X2Y2,...X5Y6,X6Y6ªº¦¸§Ç¡A°O¸ü«¬¤ù^¤å¥N½X¤Î©³¼h¥ªÃ䪺ª½¨¤¤T¨¤§Î¤ºªü©Ô§B¼Æ¦r¡A¦p¦¹³o36Ó¤å¼Æ¦r¦êªº¸Ñµª½X (¤]¥i¥H¤À¼h¥[µù³rÂI§óºë½T)¡A§Y¥iºë·Ç¦a´yz³oӸѵª¹Ï§Î¡C¦pªGn¦¨¬°¸Ñµªªº´£¥Ü¡A§âªü©Ô§B¼Æ¦r±Ë¥h¡F¦pªGÁÙµLªk¸Ñ¥X¡A¥i¥H¥[µù¤À¼h³rÂI¡F¦pªG¬O°w¹ï¤p¾Ç§C¦~¯Å¡A§ó¥i¥H§â½u¹ïºÙ¡BÂI¹ïºÙ©Î¥þµ¥¹Ï§Î¡A¥Î¦â±m¤Î¼Ð¥Ü½u±ø¡A¨Ó¹F¨ì´£¥Üªº¥\¯à¡C³o¤£´N¬O´J±Ð©ó¼Ö¶Ü¡H¦^¨ì³Ì«eÀY
CD²°18¥©ªOªºª±ªk¡G¬A¸¹ªºÃø©ö«×¡A¬O¾Ì·Pı¤ÀÃþ¥X¨Ó¡A¨Ã¨S¦³¶q¤Æªº¼Ð·Ç¡C
1.
²°©³¡G 6*6 - 4*0.5 = 34¼Ð·Çª±ªk(²©ö)¡C
18¤ù¥þ³¡¨Ï¥Î¡A¶ñº¡6*6¤è¤KÃä§Îªº°Ï°ì¡F²°©³®æºô¦³¼Ð¥Ü¶Â¦â¥~®Ø¡CX«¬¤ù¥u¯à¸¨¦b0~5ªº¦ì¸m¡AX«¬¤ù¦b0,3,5¤Î2,4,5ªº¦ì¸m¦U¦³½u¹ïºÙ¶b¡F¦b5ªº¦ì¸m¦³ÂI±ÛÂà¶b¡C
2.
²°©³¡G 6*6 = 36¦h¤@¤ùª±ªk(µyÃø)¡C
18¤ù¥þ³¡¨Ï¥Î¡A¶ñº¡¥¿¤è§Îªº°Ï°ì¡F²°©³®æºô¦³¼Ð¥Ü¬õ¦â¥~®Ø¡C¤¤¥¡¬õ¦â2*2¤è¶ô«h¯d¤UFGHKQRVWX«¬¤ùªº§Îª¬§Yºâ¸Ñµª¥X¨Ó¡CX«¬¤ù¥u¯à¸¨¦b1~4ªº¦ì¸m¡AX«¬¤ù¦b3¤Î2,4ªº¦ì¸m¦U¦³½u¹ïºÙ¶b¡C(©ÎªÌ¯d¤UFGHKQRVWX«¬¤ùªº§Îª¬¡A¦b½L±¥ô¦ó¤@Ó¦ì¸m¤]¥i¥H)¡C
3.
²°©³¡G6*6 - 4*1 = 32¤Ö¤@¤ùª±ªk(§xÃø)¡C
¨Ï¥Î17¤ùF,G,H,I,J,K,M,Q,R,S,V,W,X,Z«¬¤ù¾Ü¤@¤£¥Î¡A¶ñº¡¥¿¤è§Î¯Ê¥|Ó¨¤ªº°Ï°ì¡CX«¬¤ù¥u¯à¸¨¦b2~5ªº¦ì¸m¡AX«¬¤ù¦b3,5¤Î2,4,5ªº¦ì¸m¦U¦³½u¹ïºÙ¶b¡F¦b5ªº¦ì¸m¦³ÂI±ÛÂà¶b¡C
4.
²°©³¡G6*6 - 2*2 = 32¤Ö¤@¤ùª±ªk(·¥Ãø)¡C
¨Ï¥Î17¤ùF,G,H,I,J,K,M,Q,R,S,V,W,X,Z«¬¤ù¾Ü¤@¤£¥Î¡A¶ñº¡¥¿¤è§Î¯Ê¤¤¥¡¤è¶ôªºÀôª¬°Ï°ì¡A¤SºÙ¤è¶ôÀôª±ªk¡F²°©³®æºô¦³¼Ð¥Ü¬õ¦â¥~®Ø¡CX«¬¤ù¥u¯à¸¨¦b1,2ªº¦ì¸m¡AX«¬¤ù¦b2ªº¦ì¸m¦³½u¹ïºÙ¶b¡C
5.
²°©³¡G5*7 - 1 = 34¼Ð·Çª±ªk(§xÃø)¡C
18¤ù¥þ³¡¨Ï¥Î¡A¶ñº¡¯x§Î¯Ê¤¤¥¡³æ¦ì¤è¶ôªº°Ï°ì¡AX«¬¤ù¥u¯à¸¨¦b1~4ªº¦ì¸m¡C²°©³¥ª¤è¦³¤@¤ù¹jª©¡A§â¥¦¾îÂ\©ñ¦b²°©³¤W¤è©Î¤U¤è¡A´N¥i¥H¶}©lª±¤F¡C
6.
²°©³¡G5*7 - 4*0.5 - 1 = 32¤Ö¤@¤ùª±ªk(µyÃø)¡C
¨Ï¥Î17¤ùF,G,H,I,J,K,M,Q,R,S,V,W,X,Z«¬¤ù¾Ü¤@¤£¥Î¡A¶ñº¡ªø¤KÃä§Î¯Ê¤¤¥¡³æ¦ì¤è¶ôªº°Ï°ì¡AX«¬¤ù¥u¯à¸¨¦b0~4ªº¦ì¸m¡C²°©³¥ª¤è¦³¤@¤ù¹jª©¡A§â¥¦¾îÂ\©ñ¦b²°©³¤W¤è©Î¤U¤è¡A´N¥i¥H¶}©lª±¤F¡C
7.
²°©³¡G6*7 - 4*(2*2/2) = 34¼Ð·Çª±ªk(²©ö)¡C
18¤ù¥þ³¡¨Ï¥Î¡A¶ñº¡6*7ªø¤KÃä§Îªº°Ï°ì¡F²°©³¥ª¤è¦³¤@¤ù¹jª©¡A§â¥¦®³¥X¨Ó¤£¥Î¡A²°»\¤W¦³¥|Ó³z©úªº¡§¢å¡¨«¬¤ù©ñ¦b²°©³¥|Ó¨¤¸¨¡A®æºô¦³¼Ð¥Üºñ¦â¥~®Ø¡CX«¬¤ù¥u¯à¸¨¦b1~8ªº¦ì¸m¡AX«¬¤ù¦b6,7,8ªº¦ì¸m¦³½u¹ïºÙ¶b¡C
8.
²°»\¡G4SQR(2) * 4SQR(2) = 32¤Ö¤@¤ùª±ªk(µyÃø)¡C
¨Ï¥Î17¤ùF,G,H,I,J,K,M,Q,R,S,V,W,X,Z«¬¤ù¾Ü¤@¤£¥Î¡A¶ñº¡¥Ñ4*SQR(2)¬°Ãäªøªº¥¿¤è§Î°Ï°ì¡CÂ\©ñ¦b²°»\¤Wª±XY¶b¬O±ÛÂà45«×¡A©Ò¥H«¬¤ù¤]¥²¶·±ÛÂà45«×¡A²°»\¤W¦³Ó¥~®Ø¨Ã¦³ºô®æ½¦¤ù¥i¥H°Ñ¦Ò¡CX«¬¤ù¥u¯à¸¨¦b0~5ªº¦ì¸m¡AX«¬¤ù¦b0,2,4,5¤Î3,5ªº¦ì¸m¦U¦³½u¹ïºÙ¶b¡F¦b5ªº¦ì¸m¦³ÂI±ÛÂà¶b¡C
9. ²°»\¡G4*4 - 4*0.5 = 14 ¤C¤ù©Î¤K¤ùª±ªk(²©ö)¡C
¨Ï¥ÎA,B,C,D¥[Tetratans«¬¤ù¤¤ªº4¤ù¦@8¤ù¡A©ÎªÌTetratans«¬¤ù¤¤ªº7¤ù¡C¶ñº¡4*4ªº¤è¤KÃä§Î°Ï°ì¡CÂ\©ñ¦b²°»\¤Wª±XY¶b¬O±ÛÂà45«×¡A©Ò¥H«¬¤ù¤]¥²¶·±ÛÂà45«×¡A²°»\¤W¦³Ó¥~®Ø¨Ã¦³ºô®æ½¦¤ù¥i¥H°Ñ¦Ò¡C
¥h¦~«×Ó¤H´£¥X¨Ó¡A¤W¶µ²Ä2ºØª±ªk¤¤¡A¬O§_¦³¨â¤ù¡§¢å¡¨ ©Î¨â¤ù¡§¢Ö¡¨¦b6*6½L±ªº¥¿¤¤¥¡¬õ¦âªº2*2¤è¶ô¤º©O¡H¤µ¦~«×è¦n´£¥X¨Ó²Ä4ºØª±ªk¡A¥¦ªº½L±¥¿¦n¥i¥HÃÒ©ú¡G¨â¤ù¡§¢å¡¨¦b6*6½L±ªº¤¤¥¡2*2ªº¤è¶ô¬O¤£¥i¯àªº¡C³o¸Ì¦³18¥©ª©¦b¤è¶ôÀô½L±¡A¦û¦³³Ì¦hÃä®Ø¼Æ¤§¤ÀÃþ¦Cªí¡C¨ä¤¤¡§¢å¡¨«¬¤ù³Ì¦h¯à¦û¦³4ÓÃä¡F¡§A,H,K,M¡¨4Ó«¬¤ù³Ì¦h¯à¦û¦³3ÓÃä¡F¡§B,F,I,Q,R,V,Z¡¨7Ó«¬¤ù³Ì¦h¯à¦û¦³2ÓÃä¡F¡§C,D,G,J,S¡¨5Ó«¬¤ù³Ì¦h¯à¦û¦³1ÓÃä¡F¡§X¡¨«¬¤ù«hµLªk¦û¦³¥ô¦óÃä¼Æ¡C¥H¤WÁ`¦@¥i¦û¦³³Ì¤jÃä®Ø¼Æ¬°1*4 + 4*3 + 7*2 + 5*1 + 1*0 = 35¡A¦Ó¤è¶ôÀôªºÃä®Ø¼Æ¬O6*4 + 2*4 = 32¡A¦]¬°35 ¡V 4
= 31 < 32¡F¤S¨â¤ù¡§¢å¡¨¦b¥¿¤¤¥¡³£¬O¦û¦³4ÓÃä¼Æ¡A©Ò¥H¤è¶ôÀô½L±ª±ªk¡§¢å¡¨«¬¤ù±Ë¥h¤£¥Î¡A©ÎªÌ6*6¦h¤@¤ùª±ªk¤§½L±¥B¨â¤ù¡§¢å¡¨¦b¥¿¤¤¥¡¡A³£¬O¤£¥i¯àªº¡C¨º¨â¤ù¡§¢Ö¡¨¦b¤¤¥¡ªº°ÝÃD¡A¦³½Ð¦U¦ì°Ê°Ê¸£À°À°¦£§a¡H¦^¨ì³Ì«eÀY
¼w°êªºPeter F. Esser ¥ý¥Í§ó¬O¼F®`¡A¥L§â¥ô·N¼Æ¶qªº¤è¶ô©Îª½¨¤¤T¨¤§Î¡]ª½½u«¬ªº¦h¤è¶ô¥Ñ¹ï¨¤½u¤Á³Î¦Ó¦¨¡^¡A¥ô¥Ñ¥±©Î¥ßÅé²Õ¦¨ªº«¬¤ù¡A¦A¸g¥Ñ·Æ¹«¥kÁä¼W§R«¬¤ù¡A¥hºc¦¨¥t¤@²Õ²z·Qªº²Õ¸Ë«¬¤ù¡A¦A¥h¶ñº¡¥ô·Nªº¥±¹Ï®×©Î¥ßÅé°Ï°ì¡A¨ä¥\¯à¶W±j¥B¬O§K¶Oªº
(Freeware)¡CÁ`¦@¦³¤TÓµ{¦¡¥i¨Ñ¤U¸ü¡G±M¸Ñ2D¥±ªºpslover.zip
¡BÂà¸Ñ¥ßÅ骺3dsolver.zip¡B¤Î±M¸Ñ¦³¬}¬}ªº¦h¤è¶ôµ{¦¡cellsolve.zip¡A¯u¬OµY·ãº¡¥Ø¡C¤µ¤Ñ³ø§iªº¤º®e¦³³¡¤Àªº¸Ñµª´N¬O¥Ñ¸Óµ{¦¡¶]
(run) ¥X¨Óªº¡AÓ¤Hºô¶¸Ì§¡¦³¥[µù»¡©ú¡C¦^¨ì³Ì«eÀY
5. ¹ïºÙ»P¥þµ¥ The Relationships in
Solutions
±µ¤U¨Ó§ÚnÅý¦U¦ì¬Ý¬Ý³oÓ¡A§Ú»{¬°À³¸Ó¬O³Ì¬üÄRªº¤@Ӹѵª¡A´N¬Oº¶¨ºÓ18¥©ªOGIF
Animationªº¦Cªí¡C§Ú§â³o¤@±Ú (family) ¸Ñµª¤¤¥i¯à¥X²{ªº±ÛÂà¹ïºÙ (rotational symmetry) Ãè®g¹ïºÙ (reflexive
symmetry) ©Î¥i¤¬¬Û¹ï½Õªº (swapped) ¥þµ¥ (congruent) ¹Ï§Î¾ã²z¥X¨Ó¡C¨Ã¨î³Ì¦h¥u¯à²¾°Ê¨âÓ¤¸¥ó (up to two movable
components)¡AµM«á¦A¸ÕµÛ¥h§ä¥X¤@ӳ̨ã¥Nªí©Êªº¸Ñµª¡A¨Ó·í§@³oÓ®a±Úªº°Ó¼Ð (logo)¡F¤]´N¬O¸Ñµª¹Ï®×·í¤¤¦³³Ì¦h¹ïºÙ¤Î¥þµ¥ªº¤p¹Ï§ÎªÌ¡C¨º§ÚÁÙ¦³ºÃ°Ý¬O¡G¨s³º³o¤@®a±Úªº¸Ñµª¯àÅܤƥX´XºØµª®×¡H¦p¦ó¥hºë½T¦ap¼Æ¤Î¦³¨S¦³¤ñ³o¤@®a±Ú§ó¤jªº©O¡H§ÚµLªk½T©w¡A¦b¦¹´£¥X¨Ó½Ð±Ð¦U¦ì¥ý¶i¡H¦^¨ì³Ì«eÀY
¥H¤W²³æªº³ø§i¡A·q½Ð¦U¦ì§åµû«ü±Ð¡I
°Ñ¦Ò®Ñ References ¡G
1."POLYOMINOES" puzzles, patterns, problems, and packings, revised edition by SOLOMON W. GOLOMB , Princeton university press. 1994.
2."POLYOMINOES" A Guide to Puzzles and Problems in Tiling by GEORGE E. MARTIN , Published by The Mathematical Association of America. 1996.
3."MATHEMATICAL MAGIC SHOW" by MARTIN GARDNER. Chapter 11. VINTAGE BOOKS.
4."Dissection : Plane & Fancy" by Greg N. Frederickson , Chapter 6&10, Cambridge University Press 1997.
5."¼Æ¾ÇÅ]³NÀ]"¡A¨H¥Ã¹Å Ķ¡A²Ä11³¹¡A¤j®L¥Xª©ªÀ¡C
6."¼Æ¾Ç¤jÆ["¡A¼Ú¶§µ¼ ½sµÛ¡A²Ä¤@¨÷¡A²Ä12³¹¡A¾å¶é¥Xª©ªÀ¡A1993¡C
7."¼Æ¾Ç¹CÀ¸¤jÆ["¡A¤ýµn¶Ç ½sµÛ¡A²Ä¥|¶°¡A²Ä145~148¶¡A «eµ{¥Xª©ªÀ¡A1999¡C
8."¬ì¾Ç±Ð¨|¤ë¥Z"¡A²Ä234´Á¡A¡u®i¶}¹Ï¤G¤T¨Æ¡v¡G´^§g´¼ ¼¶¡A¬ì¾Ç±Ð¨|¤ë¥ZªÀ2000/11¡C
9."§Ö¼Ö¾Ç²ß¥¿¤è§Î"¡A¥Í¬¡¬ì¾Ç¨t¦C4¡A³¯¶¶µo Ķ¡A»·õ¬ì¾Ç±Ð¨|°òª÷·|¡A1998¡C